ZIROX ${ }^{\circledR}$ Miniature Probe SS27

Properties

Potentiometric oxygen probes, which were developed for exhaust gas measurements in motor vehicles (λ-probes), are frequently used in industrial equipment. Due to their construction, the probes have some significant disadvantages: from the uncontrolled heating (steady working voltage) and ceramic coating of the electrodes, which stimulate the diffusion of special gas components, serious measuring errors can result.
The SS27 with controlled heater and integrated primary electronics has a great accuracy at comparatively low costs. The main part is the approved ZIROX potentiometric zirconia-based solid electrolyte cell (drift-, calibration- and maintenance-free). The use of high-quality components and materials guarantees long-term stability.

Applications

The ZIROX ${ }^{\circledR}$ Miniature Probe SS27 serves exhaust gas measurements in large-scale engines, for process control and combustion optimization in small-scale firing equipments and for furnace gas measurements in heat treatment equipments. Further application areas are the optimization of incineration plants and the monitoring of industrial processes under protective or inert gas atmospheres.

Technical Data

Length.	50... 300 mm
Diameter ..	10 mm
Weight ..	0.5 kg
Dimension clamp head..............................	$64 \times 58 \times 36 \mathrm{~mm}$
Protection degree	IP42, others on request
Mounting variants	KF25, KF40, screw thread M18 x 1.5
Power supply ...	24 V DC
Power consumption..................................	17 W
Warm-up...	Approx. 5 min
Sensor voltage (raw signal)........................	$0 . . .200 \mathrm{mV}$ (0... 300 mV on request)
Range ...	$15 \mathrm{ppm} . . .20 .6$ vol\% O2 (0... 200 mV)
	0.13ppm...20.6 vol\% (0.. 300 mV)
Accuracy...	< 5 \% rel. error
Measuring gas temperature	Max. $300{ }^{\circ} \mathrm{C}$
Probe working temperature	$700{ }^{\circ} \mathrm{C}$
Surrounding conditions probe head	Max. $50{ }^{\circ} \mathrm{C}$, rel. humidity < 80%
Offset ..	Approx. -2...-8 mV (compensable)
Output signal ..	4-20 mA (0-5 V, 0-10 V on request)

Plug assignment:

1	Analog output	$+\mathrm{I}_{\mathrm{A}}$
2	Analog output	$\mathrm{GND} \mathrm{I}_{\mathrm{A}}$
3	Power supply	GND V V_{B}
4	Power supply	$+24 \mathrm{~V} \mathrm{~V}_{\mathrm{B}}$
5	Relay	RDY

Calculation of oxygen concentration

The oxygen partial pressure is calculated with the NERNST equation. For normal pressure applies:
$\varphi\left(\mathrm{O}_{2}\right)=20.64{ }^{*} \mathrm{e}^{(-46.42 \mathrm{U} / \mathrm{T})}$
$\varphi\left(\mathrm{O}_{2}\right)$: oxygen concentration in vol\%
U : cell voltage in mV
T: cell temperature in $\mathrm{K}\left(700^{\circ} \mathrm{C}=973.15 \mathrm{~K}\right)$
20.64: oxygen concentration in surrounding air at 50% rel. humidity

Translation of the output signal (range $0 . . .200 \mathrm{mV}$):

Current output 4-20 mA: $\quad 1 \mathrm{~mA}=12.5 \mathrm{mV}$ cell voltage
Voltage output $0-5 \mathrm{~V}$: $\quad 1 \mathrm{~V}=40 \mathrm{mV}$ cell voltage
Voltage output $0-10 \mathrm{~V}$: $1 \mathrm{~V}=20 \mathrm{mV}$ cell voltage

Example for $0 . . .200 \mathrm{mV}$ range: At a current of $5.5 \mathrm{~mA}\left((5.5-4)_{\mathrm{mA}} \times 12.5 \mathrm{mV}=18.75 \mathrm{mV}\right)$ an oxygen concentration $\varphi\left(\mathrm{O}_{2}\right)=8.43$ vol\% results.

