

ZIROX[®] Miniature Probe SS27

Properties

Potentiometric oxygen probes, which were developed for exhaust gas measurements in motor vehicles (λ -probes), are frequently used in industrial equipment. Due to their construction, the probes have some significant disadvantages: from the uncontrolled heating (steady working voltage) and ceramic coating of the electrodes, which stimulate the diffusion of special gas components, serious measuring errors can result.

The SS27 with controlled heater and integrated primary electronics has a great accuracy at comparatively low costs. The main part is the approved ZIROX potentiometric zirconia-based solid electrolyte cell (drift-, calibration- and maintenance-free). The use of high-quality components and materials guarantees long-term stability.

Applications

The ZIROX[®] Miniature Probe SS27 serves exhaust gas measurements in large-scale engines, for process control and combustion optimization in small-scale firing equipments and for furnace gas measurements in heat treatment equipments. Further application areas are the optimization of incineration plants and the monitoring of industrial processes under protective or inert gas atmospheres.

ZIROX[®] Miniature Probe SS27

Sensoren und Elektronik GmbH

Technical Data

Length	50300 mm
Diameter	10 mm
Weight	0.5 kg
Dimension clamp head	64 x 58 x 36 mm
Protection degree	IP42, others on request
Mounting variants	KF25, KF40, screw thread M18 x 1.5
Power supply	24 V DC
Power consumption	17 W
Warm-up	Approx. 5 min
Sensor voltage (raw signal)	0200 mV (0300 mV on request)
Range	15 ppm20.6 vol% O ₂ (0200 mV)
	0.13ppm20.6 vol% (0300 mV)
Accuracy	< 5 % rel. error
Measuring gas temperature	Max. 300 °C
Probe working temperature	700 °C
Surrounding conditions probe head	Max. 50 °C, rel. humidity < 80 %
Offset	Approx28 mV (compensable)
Output signal	4-20 mA (0-5 V, 0-10 V on request)

Plug assignment:

1	Analog output	+ IA
2	Analog output	GND IA
3	Power supply	GND VB
4	Power supply	+ 24 V V _B
5	Relay	RDY

Calculation of oxygen concentration

The oxygen partial pressure is calculated with the NERNST equation. For normal pressure applies:

 $\phi(O_2) = 20.64 * e^{(-46.42 \text{ U/T})}$

φ(O ₂):	oxygen concentration in vol%
U:	cell voltage in mV
Т:	cell temperature in K (700 °C = 973.15 K)
20.64:	oxygen concentration in surrounding air at 50 % rel. humidity

Translation of the output signal (range 0...200mV):

Current output 4-20 mA:	
Voltage output 0-5 V:	
Voltage output 0-10 V:	

1 mA = 12.5 mV cell voltage 1 V = 40 mV cell voltage 1 V = 20 mV cell voltage

Example for 0...200 mV range: At a current of 5.5 mA ((5.5-4)_{mA} x 12.5 mV = **18.75** mV) an oxygen concentration $\varphi(O_2) = 8.43$ vol% results.

Sensoren und Elektronik GmbH